Δευτέρα 21 Φεβρουαρίου 2011

Russian SAMs

 S300P SITE

There are two common battery configurations employed by the S-300P SAM system. The first relies on a typically prepared site with a tower-mounted engagement radar. The second relies on either a prepared or unprepared site with a mobile engagement radar vehicle. The number of TELs present varies from user to user, location to location, and variant to variant, and these differences will be discussed in the Deployment Strategies sections of this article.

The following annotated image of an S-300PT site near Severodvinsk depicts a battery employing tower-mounted engagement and 76N6 radars:


The following annotated image of an S-300PMU site near Sevastopol depicts a standard site layout employing a mobile engagement radar and a tower-mounted 76N6:



Some sites employing a mobile engagement radar still retain the tower assembly for mounting the radar should the need arise. The following site south of Voronezh depicts a mobile engagement radar being employed, with the 40V6 mast assembly positioned nearby in a lowered position:


EXAMPLES OF COMMON SITE CONFIGURATIONS

There are many different iterations of S-300P site configurations. Most of them differ in the number, shape, and positioning of prepared revetments used to protect the components. However, it should be stressed that the S-300P is a mobile SAM system, and as such can be deployed almost anywhere. That being said, there are a few common site layouts that have been identified, and these layouts will be detailed here.

One of the more common S-300P site configurations is a central tower-mounted engagement radar surrounded on two sides by parralel "slanted-E" shaped divided revetments for TELs or missile reload canisters. A tower-mounted 76N6 is positioned nearby. This site layout is often featured around Moscow on the grounds of former S-25 (SA-1 GUILD) SAM sites, but is also featured elsewhere as well, such as in Belarus.

The following annotated image depicts an S-300PM-1 site near Bortnevo, north of Moscow, employing the "slanted-E" revetment style:


Another common site configuration features four launch positions arranged around a central raised berm for a mobile engagement radar. The size and shape of the launch positions, as well as the presence of protective revetments for the TELs, varies from site to site and nation to nation, but the overall layout remains relatively uniform. The site near Sevastopol depicted above is an example of such a configuration. All identifiable Chinese S-300P sites employ a variation on this layout.

Given that the S-300P SAM system is a mobile system, it is also quite common to find batteries deployed on former legacy SAM sites. As seen previously, many S-25 sites around Moscow are now home to S-300P batteries. Slovakia's S-300PMU battery resides on the grounds of a former S-125 site, and there is a Ukrainian S-300PMU battery and garrison positioned on a former S-200 complex near Sevastopol, to cite a few examples.

The following image depicts an S-300PM battery deployed on the grounds of a former S-75 site near Roschino, north of St. Petersburg. The Roschino site is slightly unusual insofar as there are S-300P-style revetments to the southwest that are apparently unused.


Despite the presence of common site configurations, there are numerous random layouts. The numerous site configurations probably stem from the fact that the S-300P is a mobile system able to be located nearly anywhere. Some sites feature numerous revetments designed for two TELs apiece, some feature larger revetments for four or more TELs, and some feature no revetments at all.

The lack of consistency on a large scale in the configuration of S-300P sites belies the importance of being able to identify the system based on the visible components. The S-300PT is relatively easy to identify given the unique appearance of the 5P85-1 launchers. Differentiating between an S-300PM and an S-300PM-1 seems more difficult from the outset, but is in fact not all that hard. The 5P85S/D TELs measure around 43 feet in length, while the 5P85T TELs measure around 47 feet in length, based on visible imagery. As the S-300PS had a service life of 20 years and was introduced in 1982, and many of them were modified to S-300PM standard, any sites with 43 meter TELs can be identified relatively accurately as S-300PM sites. Of course, export systems would be the S-300PMU, and export sites featuring the 47-foot semi trailer TELs would be S-300PMU-1s.

RUSSIAN DEPLOYMENT STRATEGIES

Russian S-300P sites display a number of identifiable deployment strategies. S-300P SAM systems are employed in defense of key industrial and military areas, as well as large population centers.

S-300PM and S-300PM-1 sites around Moscow typically employ the "slanted-E" site configuration, and most of them are based on the grounds of former S-25 SAM sites. Moscow defense sites all employ tower mounted engagement radars in conjunction with tower-mounted 76N6 radars. This provides a robust low-altitude target detection envelope around the capital city. Eight to twelve TELs are typically present at each site, with at least six TELs at each site being loaded with missiles and positioned in a launch revetment.

S-300P sites located along the periphery of Russia's Far East Military District, particularly near Vladivostok and Petropavlovsk, tend to feature mobile engagement radars and tower-mounted 76N6 radars. This is likely due to the fact that sites located along the periphery are typically positioned very near the water and therefore do not have substantial terrain for the engagement radar to contend with along potential threat ingress routes. A raised berm for the engagement radar is often more than sufficient to ensure the radar has a sufficient field of view with respect to any vegetation in the area. The single exception is the S-300PM site positioned to defend the Rybachiy SSBN base, featuring a tower-mounted engagement radar, likely due to the terrain constraints potentially interfering with the engagement radar being able to see out over the open ocean from where it is positioned. The Yelizovo and Petropavlovsk sites are positioned at a higher elevation than the Rybachiy site, providing them with a better field of view than the Rybachiy site.

S-300P sites on the Kola peninsula and around St. Petersburg feature tower-mounted engagement radars, likely due to the varied terrain in the areas where the SAM sites are positioned. Kola sites feature eight active TELs, with St. Petersburg sites featuring four active TELs, likely due to the greater strategic importance of the Kola peninsula and associated military facilities.

Interestingly, the Kaliningrad S-300P sites feature tower-mounted engagement radars at four sites and a mobile engagement radar at the fifth site. There are no major terrain constraints requiring use of the towers for the engagement radars. However, the Kaliningrad region is geographically separated from the rest of Russia, and is is possible that tower-mounted engagement radars are employed to provide an increased probability of low-altitude detection. Kaliningrad is also home to a Russian naval contingent, so perhaps the engagement radars are tower mounted at four of the sites to remove the potential of low-altitude clutter generated by the incoming and outgoing naval vessels. This doesn't seem to make complete sense, however, as the Baltiysk site nearest the harbor entrance features the mobile engagement radar.

The lack of S-300PM-1 batteries in areas identified as being of strategic importance, such as Petropavlovsk, Vladivostok and Kaliningrad, is likely due to the fact that the more sensitive systems are kept in areas where the presence of foreign ELINT assets is far less likely. There is, however, an S-300PM-1 battery deployed near Novorossiysk, The presence of an S-300PM-1 site in this area is likely due to the fact that it represents the sole identifiable active strategic SAM site in the area. It should also be noted that the S-300PM-1 systems are at most nearly a decade newer than the S-300PM systems. Ergo, it is likely that the areas considered to be the most strategically important were the first to receive the S-300PM-1. This would explain the high concentration around Moscow, and the presence on the Kola Peninsula. S-300PM-1s not being present on the Kamchatka Peninsula can be explained away by the fact that the Northern Fleet is the main combat arm of the Russian Navy. Petropavlovsk and Rybachiy also enjoy protection by a MiG-31 regiment, so the area is not necessarily at a loss.

CHINESE DEPLOYMENT STRATEGIES

There are five visible active S-300P sites inside of China at this moment. China apaprently has chosen to employ the S-300P systems to defend key population centers, relying on older HQ-2 SAM systems to defend smaller population centers and military facilities. Four of China's S-300P locations are S-300PMU-1 sites, with the fifth being home to an S-300PMU battery. China employs a relatively standard deployment strategy throughout its S-300P batteries. Four TELs are deployed around a central, mobile engagement radar vehicle positioned on a raised berm. There are four separate pads for the TELs, with two TELs positioned on each of two launch pads. Tower-mounted engagement radars are not employed, allowing the core system components to be rapidly repositioned. A 36D6 or 64N6 EW radar is colocated with each SAM battery, with at least one 64N6 being present in each deployment area either in a colocated or nearby position to provide long-range target detection.

The one major inconsistency in Chinese S-300P deployments is the presence of a tower-mounted 76N6 radar. The 76N6 is present at the Yutian S-300PMU site, along with both Shanghai S-300PMU-1 sites. The reasoning behind this strategy likely relates to potential threat ingress routes. The Shanghai S-300PMU-1 sites are positioned near the coastline and as such would be able to monitor the airspace offshore, potentially detecting inbound strike aircraft and missiles from Kadena AB, Okinawa, and southern Japan. Given the low-altitude detection function of the 76N6, it is plausible that the Shanghai sites are positioned to detect inbound, low-altitude missiles launched from naval vessels or submarines.

Why, then, would there be a disparity in the 76N6 deployment to the north? Beijing is much farther inland, and is also protected by the defenses of the Bo Hai gulf. Any potential threat ingressing from the east or south would have to penetrate a dense air defense network which also included interceptor aircraft and other SAM systems. Beijing is also borered to the north and west by mountainous terrain, making low-altitude detection less important as any inbound target from those directions would pop up into the coverage of the 64N6 EW radar sites positioned in the area.

The inconsistency, therefore, is the presence of the 76N6 at the Yutian S-300PMU site. The 120 kilometer range of the 76N6 does not give it enough range to reach offshore from the Yutian site. It is possible that the 76N6 was only purchased for use with the S-300PMU and therefore would not be found at any of the S-300PMU-1 sites, whose 30N6E1 radar does offer improved performance over the 30N6E employed by the S-300PMU. The answer may also lie in the condition of the Yutian 76N6. It is visible in a lowered position, potentially being prepared for transport.

However, the Yutian 76N6 may simply be lowered for maintenance, or may be a new arrival. In the latter case, it may be indicative of future 76N6 deployments at the northern S-300P sites to augment the already robust radar coverage of the systems. The Yutian site may also be a training unit, allowing crews to train on all of the system components. Lastly, the Yutian 76N6 may be positioned to aid in the detection of cruise missiles fired towards Beijing-area targets from submerged submarines that manage to penetrate the Bo Hai gulf's waters.

DEPLOYMENT STRATEGIES OF OTHER NATIONS

S-300P sites in the Ukraine, Belarus, and Kazakhstan are primarily deployed to defend population centers, capitals, and in the case of the Ukraine military facilities. Most S-300PT facilities feature a standard twelve TEL complement, although there are some minor variations, as there are with the S-300PMU deployments.

Slovakia was not analyzed due to the presence of only a single identifiable S-300P battery. Likewise, Greece was not analyzed as S-300PMU-1 components are visible at two locations on Crete but they are not deployed.

S-300P SYSTEM COVERAGE

The S-300P is a very capable strategic SAM system, and as such can provide very robust air defense over a large region of airspace. By employing a number of batteries positioned to provide overlapping areas of coverage, a nation can effectively create what amounts to an area of denied airspace. While the S-300P does feature multiple-target engagement capability, it is also wise to overlap coverage areas in order to reduce the effect of saturation by actual or false targets.

The following image depicts S-300P coverage provided by identified, active sites positioned around Moscow. The blue rings represent the associated 64N6 EW radars. Large red rings represent S-300PM-1 batteries, with small red rings representing S-300PM batteries. The S-300PM-1 has a 150 kilometer range, the S-300PM a 90 kilometer range, and the 64N6 a 300 kilometer range. The overlapping coverage areas and the number of batteries in place have effectively transformed the skies over Moscow into the most heavily defended airspace in the world.


Samoderzhets was a program begun shortly after the merger of Almaz and Antey aimed at identifying the characteristics and capabilities of new SAM systems operating on a national level. The research effort was conducted by the Second Central Scientific Research Institute of the Ministry of Defense. Deputy Defense Minister General of the Army Aleksey Moskovskiy, in a December 2004 interview for Vestnik Vozdushnogo Flota, described Samoderzhets as a project aimed at finding an "optimal solution" for the development of new air defense systems, systems capable of performing tasks for both the Army and PVO air defense, and operating within a national integrated air defense network framework:

"The name you mentioned, Samoderzhets, is not a system. It is a system project to look for an optimal solution."

General Moskovskiy goes on to state that an actual SAM system like the one outlined in the Samoderzhets project would most likely not be procured anytime soon as it would be "superfluous", as the S-400 was nearing service entry, but does state that modifying S-400 components to operate in such a manner (implying a national integrated network) was possible. The reason for integrating such systems would be to better coordinate air defense assets, and to better integrate the anti-missile capabilities of S-300V type systems (which are presently Russian Army assets, being tactical systems) into the national defense network. Ergo, the creation of an actual weapon system was not the goal of Samoderzhets, but rather the description and outlining of a new national framework to better control and integrate present and future systems to maximize their effectiveness, as well as the delineation and outlining of capabilities required by the individual systems serving in such a network. Official news regarding the Samoderzhets project virtually disappeared after 2004. There was a logical explanation for this, however: the research program was completed in 2004.

Samoderzhets was clearly never intended to result in the direct production of a new SAM system bearing the name, but it was a very important research endeavour, especially in the light of the new Almaz-Antey consortium. Future SAM systems will likely be designed around the system requirements and framework researched and outlined in the Samoderzhets project. In fact, early 2007 saw the mention of such a system. Sergey Ivanov, Russian Defense Minister, gave Almaz-Antey the task to develop a new air defense system capable for the first time of providing air defense, missile defense, and space defense. Such a project would seem to be revolutionary in concept, but seems perfectly logical as a next step given the results of the Samoderzhets project, and has been given until 2015 to produce hardware. 2015 may not seem that far off, especially given the delays associated with the S-400 system, but the new all-encompassing system has in fact been mentioned as early as 2005, and may have been in development before then.

It should be noted that the term "air defense system" does not necessarily imply one specific system such as the S-400, but could very well imply a series of systems, in this case the S-400 and S-500, integrated under a united national network, such as the kind outlined under the Samoderzhets project.

It is likely that the new system will build upon the S-400, using S-400 components for air defense. The missile defense component will likely be the aforementioned S-500 system, referred to in some sources as Vlastelin. The S-500 re-entered the public eye in August of 2007. On the 6th of August, Igor Ashurbeyli of Almaz-Antey was interviewed on Channel One TV in Russia regarding the first S-400 battery being activated near Elektrostal. Ashurbeyli stated that the next project for Almaz-Antey was the S-500, a mobile anti-missile system designed to function as part of the "unified system of Russia's air defense", a clear reference to Ivanov's statements in February and the concepts researched under Samoderzhets. Development of the S-500, according to some sources, had ended at one point in the past due to a lack of funding, but could easily have been restarted, saving Almaz-Antey from having to come up with a new anti-missile system from scratch. The S-500 is also believed to be related to the 45T6 anti-ballistic missile, which would certainly enable it to potentially perform exoatmospheric intercepts.

Confusion resulting from the appearance of the Samoderzhets name in press reporting did lead to the assumption that a new system was being developed, but as Samoderzhets was a project only, this is clearly not the case. There are a few reasons why certain assumptions about the potential new system were made, however, and they can be logically explained.

Samoderzhets is often claimed to be a SAM system integrating S-300P/S-400 and S-300V components. This is basically true, but not in a physical sense. Samoderzhets called for the integration of existing systems into a national level network, while designing new systems to operate in such a manner from the outset, regardless of whether or not they were employed by the Army or the Air Defense Troops. These systems would have, according to General Moskovskiy, included the S-300P and S-300V families. They would have been integrated, but not in a physical sense, as many have incorrectly assumed.

Samoderzhets was also described as combining the best aspects of previously developed SAM systems, and serving as the basis for a new standardized SAM system. This is partly correct; Samoderzhets would have integrated S-300V and S-300P/S-400 type systems, enabling their effectiveness to be maximized. Samoderzhets does also form the basis for new SAM development, as it outlined the framework under which new systems will operate, as well as their desired performance characteristics.

The main nail in the coffin of the Samoderzhets argument is the 2007 tasking to develop a new SAM system. Were Samoderzhets already a developed system by 2004, as some suggest, a new air and missile defense system would clearly not have been required. Furthermore, the Samoderzhets project was already three years past its completion date by 2007. As such the project initiated in 2007 would not have required a 2015 demonstration date; were Samoderzhets a true SAM system, completed in 2004, it would be ready for deployment far earlier than 2015. Lastly, the S-500 has been mentioned as the next SAM system to be developed for operational use, not Samoderzhets.

Some sources have claimed that Samoderzhets was proposed as an alternative to the S-400. In that light Samoderzhets may have been intended to result in a hybrid system, but the induction of the S-400 into front-line service would seem to be enough to put that theory to rest.

A final argument against the development of Samoderzhets as an actual SAM system is that it would represent both a waste of effort, given the S-500 development program for the anti-missile role, and a reduction in capability when compared to the S-400. In the anti-aircraft role the S-300VM's 9M83M missile has a range of 200 kilometers, a full 50 or 100 kilometers shy of the two range figures quoted for the 48N6DM employed by the S-400, even without considering the 400 kilometer range attained by the S-400's 40N6. Furthermore, Samoderzhets cannot be the new S-500 system, provided of course that both Ivanov and Ashurbeyli were referring to the same system. If, as many sources would have us believe, Samoderzhets represents a combination of S-300VM and S-400 systems, then the resultant system would fail to achieve the performance specified by Ivanov insofar as intercepting exoatmospheric targets is concerned.

Samoderzhets as a research endeavour is a far more logical explanation in light of the current evidence. 

http://geimint.blogspot.com/

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου